fonction | a | x | a x | a x + b | x2 | x3 | xn | 1 / x | = x-1 | √(x) | = x1/2 | ex | ln(x) |
→ dérivée | 0 | 1 | a | a | 2 x | 3 x2 | n xn-1 | - 1 / x2 | = - x-2 | 1 / ( 2 √(x) ) | = (1/2) x-1/2 | ex | 1 / x |
fonction | u + v | u v | u / v | f(u) | u2 | u3 | un | 1 / u | = u-1 | √(u) | = u1/2 | eu | ln(u) |
→ dérivée | u' + v' | u' v + v' u | ( u' v - v' u ) / v2 | f '(u) × u' | 2 u u' | 3 u2 u' | n un-1 u' | - u' / u2 | = - u-2 u' | u' / ( 2 √(u) ) | = (1/2) u-1/2 u' | u' eu | u' / u |
fonction | ax+b | (ax+b)3 | eax+b | ln(ax+b) |
→ dérivée | a | 3 a (ax+b)2 | a eax+b | a / (ax+b) |
rappels | ( xn )' = n xn-1 | → | x' = 1 | (ax+b)' = a | (1/x)' = -1/x2 | (x1/2)' = (1/2)x-1/2 = 1/(2x1/2) |
( f(u) )' = f '(u) × u' | → | ( u2 )' = 2 u u' | ( un )' = n un-1 u' | |||
(u v)' = (u' v) + (u v') | → | ( u / v )' = (u' v - u v') / v2 | ||||
( ex )' = ex | → | ( eu )' = eu u' | ( eax+b )' = a eax+b | |||
( ln x )' = 1 / x | → | ( ln u )' = u' / u | ( ln(ax+b) )' = a / (ax+b) | |||