boule 1 | boule 2 | urne A |
Noire P=2/4 | Noire P=1/3 | ( N, N ) P=2/12 Y0 = 2 |
Blanche P=2/3 | ( N, B ) P=4/12 Y0 = 1 | |
Blanche P=2/4 | Noire P=2/3 | ( B, N ) P=4/12 Y0 = 1 |
Blanche P=1/3 | ( B, B ) P=2/12 Y0 = 0 |
k = | 0 | 1 | 2 |
P(Y1=k) = | 0 | 1 | 0 |
boule N de l'urne A | boule N de l'urne B |
boule B de l'urne B | |
boule B de l'urne A | boule N de l'urne B |
boule B de l'urne B |
état Y1 | urne A { N, B } | urne B { N, B } | |
état Y2 | urne A { N, B } | urne B { N, B } | Y2 = 1 |
état Y1 | urne A { N, B } | urne B { N, B } | |
état Y2 | urne A { B, B } | urne B { N, N } | Y2 = 0 |
état Y1 | urne A { N, B } | urne B { N, B } | |
état Y2 | urne A { N, N } | urne B { B, B } | Y2 = 2 |
état Y1 | urne A { N, B } | urne B { N, B } | |
état Y2 | urne A { N, B } | urne B { N, B } | Y2 = 1 |
k = | 0 | 1 | 2 |
P(Y2=k) = | 1/4 | 1/2 | 1/4 |
état Yk = 0 | urne A ( B, B ) | urne B ( N, N ) | |
état Yk+1 | urne A ( N, B ) | urne B ( B, N ) | Yk+1 = 1 ( seul état Yk+1 possible ) |
Yk=0 | Yk=1 | Yk=2 | |
PYk(Yk+1=0) | 0 | 1/4 | 0 |
PYk(Yk+1=1) | 1 | 1/2 | 1 |
PYk(Yk+1=2) | 0 | 1/4 | 0 |
Vérif. ∑ | ∑ = 1 | ∑ = 1 | ∑ = 1 |
ak+1 | = A × | ak | = | 0 | 1/4 | 0 | × | ak |
bk+1 | bk | 1 | 1/2 | 1 | bk | |||
ck+1 | ck | 0 | 1/4 | 0 | ck |
bk+1 | = 1 | − (1/2) bk |
L | = 1 | − (1/2) L |
| ||
( bk+1 − L ) | = | − (1/2) ( bk − L ) |