3x | + | y | − | z | = | 1 | (Eq.1) |
−2x | + | 2y | − | 3z | = | −1 | (Eq.2) |
2x | − | y | + | 2z | = | 2 | (Eq.3) |
−6x | − | 2y | + | 2z | = | −2 | (−2 Eq.1) |
−2x | + | 2y | − | 3z | = | −1 | (Eq.2) |
−8x | + | 0 | − | z | = | −3 | (Eq.4) |
−2x | + | 2y | − | 3z | = | −1 | (Eq.2) |
4x | − | 2y | + | 4z | = | 4 | (2 Eq.3) |
2x | + | 0 | + | z | = | 3 | (Eq.5) |
−8x | + | 0 | − | z | = | −3 | (Eq.4) |
2x | + | 0 | + | z | = | 3 | (Eq.5) |
−6x | + | 0 | + | 0 | = | 0 | (Eq.6) |
2x | + | 2y | + | 6z | = | 2 | (Eq.1) |
3x | + | y | − | z | = | −3 | (Eq.2) |
−x | + | 2z | = | 2 | (Eq.3) |
2x | + | 2y | + | 6z | = | 2 | (Eq.1) |
−6x | − | 2y | + | 2z | = | 6 | (−2 Eq.2) |
−4x | + | 0 | + | 8z | = | 8 | (Eq.4) |
−4x | + | 0 | + | 8z | = | 8 | (Eq.4) |
4x | − | 8z | = | −8 | (−4 Eq.3) | ||
0 | + | 0 z | = | 0 | (Eq.5) |
(1−λ)x | + | 3y | = | 0 | (Eq.1) |
2x | + | (2−λ)y | = | 0 | (Eq.2) |
(−2+2λ)x | + | −6y | = | 0 | (Eq.1) |
2(1−λ)x | + | (1−λ)(2−λ)y | = | 0 | (Eq.2) |
0 | + | (2 − 3 λ + λ2 −6)y | = | 0 | (Eq.3) |
x | −∞ | −3 | −11/5 | −1 | 2 | +∞ | ||||||
− 5 x − 11 | + | + | + | 0 | − | − | − | − | − | ax+b du signe de a pour +∞ | ||
x + 1 | − | − | − | − | − | 0 | + | + | + | ax+b du signe de a pour +∞ | ||
x2 + x − 6 | + | 0 | − | − | − | − | − | 0 | + | ax2+bx+c du signe de a à l'extérieur des racines ±∞ | ||
A | − | || | + | 0 | − | || | + | || | − | |||
A ≥ 0 | F | F | V | V | F | F | V | F | F |