(Eq.) | Elimination(x) de l'Eq.(2) | Elimination(x) de l'Eq.(3) | ||||||
2 x | + 3 y | + 4 z | = 34 | (1) | | × (- 3) | | × (- 4) | ||
3 x | - 2 y | + z | = 10 | (2) | | × (+ 2) | | | ||
4 x | - y | + 2 z | = 22 | (3) | | | | × (+ 2) |
Suppression de x de l'équation (2) | Suppression de x de l'équation (3) | |||||||||
- 6 x | - 9 y | - 12 z | = - 102 | (1) × -3 | - 8 x | - 12 y | - 16 z | = - 136 | (1) × -4 | |
+ 6 x | - 4 y | + 2 z | = 20 | (2) × 2 | + 8 x | - 2 y | + 4 z | = 44 | (3) × 2 | |
|
| |||||||||
- 13 y | - 10 z | = - 82 | - 14 y | - 12 z | = - 92 |
(Eq.) | Elimination(y) de l'Eq.(3.1) | |||||
2 x | + 3 y | + 4 z | = 34 | (1) | | | |
- 13 y | - 10 z | = - 82 | (2.1) | | × (+ 14) | ||
- 14 y | - 12 z | = - 92 | (3.1) | | × (- 13) |
Suppression de y de l'équation (3.1) | |||
- 182 y | - 140 z | = - 1148 | (2.1) × +14 |
+ 182 y | + 156 z | = + 1196 | (3.1) × -13 |
| |||
+ 16 z | = + 48 |
(Eq.) | ||||
2 x | + 3 y | + 4 z | = 34 | (1) |
- 13 y | - 10 z | = - 82 | (2.1) | |
16 z | = 48 | (3.2) |
2 × 5 + 3 × 4 + 4 × 3 | = 10 + 12 + 12 | = 10 + 24 | = 34 | OK |
3 × 5 - 2 × 4 + 3 | = 15 - 8 + 3 | = 18 - 8 | = 10 | OK |
4 × 5 - 4 + 2 × 3 | = 20 - 4 + 6 | = 26 - 4 | = 22 | OK |
(Eq.) | ||||||
2 x | + 3 y | + 4 z | = 34 | (1) | ||
3 x | - 2 y | + z | = 10 | (2) | => z = 10 - 3 x + 2 y | (C'est la variable la plus simple) |
4 x | - y | + 2 z | = 22 | (3) |
(Eq.) | ||||
2 x | + 3 y | + 4 ( 10 - 3 x + 2 y ) | = 34 | (1.1) |
4 x | - y | + 2 ( 10 - 3 x + 2 y ) | = 22 | (3.1) |
En développant : | (Eq.) | |||
2 x | + 3 y | + 40 - 12 x + 8 y | = 34 | (1.1) |
4 x | - y | + 20 - 6 x + 4 y | = 22 | (3.1) |
Soit : | (Eq.) | Elimination(x) par une méthode de combinaison | |||
- 10 x | + 11 y | = 34 - 40 = - 6 | (1.1) | | × (+ 2) | |
- 2 x | + 3 y | = 22 - 20 = + 2 | (3.1) | | × (- 10) |
Soit : | ||||
- 20 x | + 22 y | = - 12 | (1.1) × (+ 2) | |
+ 20 x | - 30 y | = - 20 | (3.1) × (- 10) | |
| ||||
- 8 y | = - 32 |